
The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s
view – the Joint Undertaking is not responsible for any use that may be made of the information it
contains. The users use the information at their sole risk and liability.

The 4SECURail Formal Methods Demonstrator

Franco Mazzanti
Dimitri BelliRSSRAIL 2022, June 2, Paris

Italian National Research Council
Institute of Information Science and

Technology – ISTI - Pisa

2

The railway context

The railway infrastructure is a complex System of Systems

Expensive to develop, maintain and exercise safely

Spreading across many national borders

Managed by many administrative bodies

Developed by many producers

3

The railway context

The solution: High Quality Standard Interfaces between components

+ to reduce costs and vendors lock-in
+ to increase competitivity, dependability and efficiency

(safety is already guaranteed)

Several initiatives try to advance the state of art
(e.g. EULYNX / ERTMS / SHIFT2RAIL / Europe’s Rail)

recognizing the importance of formal analysis
(during development and during standardization)

4

4SECURail: The Demonstrator

4SECURail (November 2019 - Novemer 2021)
is a (small) project of the Shitf2Rail initiative

- Can formal methods help improving the quality
of requirement specifications (standards)? How?

- Can their adoption be cost effective for IM? How much?

One of its golas is a controlled experiment (demonstrator)
in exploiting formal methods in the requirements definition phase
of a railway signalling system.

I.e. The project takes the point of view of the Infrastructure Manager
(standardization bodies), with focus not just in safety but also

interoperabiity

5

The 4SECURail approach (incremental/iterative)

Natural Language
 Requirements revision

Formal modelling
and analisys

Abstract modelling

Executable modelling

D2.3
Initial Natural Language

Requirements

modelling and analysis

Abstract, Semiformal
SysML/UML

Designs

Detailed, Executable
SysML/UML

Designs

Formal Models
+

Formal Properies

Natural Language
 Requirements, Assumptions,

Guarantees

6

The 4SECURail case study (RBC-RBC(Radio Block Centre) communications)

 ETCS/ERTMS
Class 1 System Requirements Specification

FIS for RBC/RBC Handover

RBC-RBC
Safe Communication Interface

EuroRadio FIS

Safe Functional Module

SAI Sublayer

ER Safety Layer

Communication Functional Module

RBC Handover Transaction

RBC/RBC Communication Supervision * Handling of Creation/Deletion of
 Safe Communication lines
* Exchange of NRBC messages

* Support of concurrent RBC/RBC
Handover Transactions

* Protection against Delay,
Re-sequencing,

Deletion, Repetition
* Protection against Corruption,

Masquerade, Insertion

* Interface towards the EuroRadio OSI levels

UNISIG Subset 026

UNISIG Subset 039

UNISIG Subset 098

UNISIG Subset 037

4SECURail
Case Study

CSL

SAI

ER

RBC
User

7

4SECURail: The Artifacts of the Demonstrator

Natural Language
 Requirements revision

Formal modelling
and analisys

Abstract modelling

Executable modelling

D2.3
Initial Natural Language

Requirements

modelling and analysis

Abstract, Semiformal
SysML/UML

Designs

Detailed, Executable
SysML/UML

Designs

Formal Models
+

Formal Properies

Natural Language
 Requirements, Assumptions,

Guarantees

8

Why an Executable UML/SysML model?

- Removing ambiguity in the initial NL documentation by adopting
a standard, widely known, precise notation.

- Remaining at this level independent from the specific formal verification
framework(s) adopted (preferrable in the case of international standards)

- Allowing, not formal methods experts, to understand and confirm the
underlying design being modelled.

9

4SECURail: UML Assumptions for simple and precise semantics

- FIFO events queues

- No priority conflicts

- No parallel or composite states

- No deferred events

- No history/deep-history states

- Basic data types (enum, int, bool, vectors)

- Basic statements (assignments, conditionals)

- No entry/exit/do activities

10

4SECURail: Executable UML Modelling (example)

SAI_DISCONNECT.indication /

icsl_tick [receiveTimer = max_receiveTimer] /
 Timer.ok_icsl;
 SAI.SAI_DISCONNECT.request;
 receiveTimer := 0;
 sendTimer := 0;
 RBC.RBC_User_Disconnect_indication

- /
 SAI.SAI_CONNECT.request;
 connectTimer := 0;

SAI_CONNECT_confirm /
 RBC.RBC_User_Connect_indication;
 connectTimer := max_connectTimer;
 receiveTimer := 0;
 sendTimer := max_sendTimer

NOCOMMS
Disconnected

icsl_tick [connectTimer =
 max_connectTimer] /
Timer.ok_icsl

NOCOMMS
Connecting

NOCOMMS
 Waiting

SAI_DISCONNECT.indication /
 RBC.
 RBC_User_disconnect_indication;
 receiveTimer := 0;
 sendTimer := 0;

R1

R2

R3

R4R6

R5

R7
icsl_tick [(receiveTimer < max_receiveTimer)

 and (sendTimer = max_sendTimer)] /
 Timer.ok_icsl;
 sendTimer := 0;
 receiveTimer := receiveTimer+1
 SAI.SAI_DATA.request(Lifesign,nodata)

RBC_User_Data.request(userdata) /
 SAI.SAI_DATA_request (RBCdata,userdata) ;
 sendTimer := 0

R8

R9
SAI_DATA_indication(msgtype,userdata)
 [msgtype != Lifesign] /
 RBC.RBC_User_Data_indication(userdata) ;
 receiveTimer := 0;

R10
SAI_DATA_indication(msgtype,userdata)
 [msgtype = Lifesign] /
 receiveTimer := 0;

R11

Initiator CSL

COMMS
Connected

 receiveTimer := 0;
 sendTimer := 0;
 connectTimer := 0;

icsl_tick [connectTimer <
 max_connectTimer] /
 Timer.ok_icsl;
 connectTimer := connectTimer +1;

RTa
RTb

icsl_tick /
 Timer.ok_icsl

icsl_tick [(receiveTimer < max_receiveTimer)
and (sendTimer < max_sendTimer)] /

 Timer.ok_icsl;
 sendTimer := sendTimer +1;
 receiveTimer := receiveTimer+1

RTc

max_receiveTimer: int;
max_sendTimer: int;
max_connectTimer: int;

11

4SECURail: from Executable to Formal

Natural Language
 Requirements revision

Formal modelling
and analisys

Abstract modelling

Executable modelling

D2.3
Initial Natural Language

Requirements

modelling and analysis

Abstract, Semiformal
SysML/UML

Designs

Detailed, Executable
SysML/UML

Designs

Formal Models
+

Formal Properies

Natural Language
 Requirements, Assumptions,

Guarantees

12

Formal Modelling and Analysis (1)

UML textual encoding
(UMC)

Class Is
Signals ...
Vars ...
Transitions ...
end

Class Is
Signals ...
Vars ...
Transitions ...
end

Objects ...

ProB encoding LNT encoding

MACHINE ...
VARIABLES

operation =
PRE ..
END;

operation =
PRE ..
END;

END

process P1 ...
end process

process P2 ...
end process

process Main ...
is par

P1 ..
|| P2...
end par

13

4SEURail: Why three formal models (UMC, ProB, LNT)?

- The three formal models can be compared for equivalence,
detecting possible errors made in the formal encoding.

- The three different verification frameworks provide different verification
functionalities. (e.g. linear vs branching time, compositional vs explicit)

- When the same fuctionality is supported (e.g. animation, analisys of counter
examples), the most user-friendly framework can be used.

- It is however more expensive and difficult to become expert users of several
verification frameworks.

14

4SECURail: Formal Modelling and Analysis

UMC
• Static Analysis

• Reachability Properties

• System Traces Minimization

• Statespace Stats

• Deadlocks

• Runtime Errors

• UCTL Model Checking

(state/event based)

• Custom system observations

• Explanations as Message

Sequence Diagrams

ProB LNT
• Static Analysis

• Reachability Properties

• Statespace Stats

• State Invariants

• Deadlocks

• LTLe Model Checking

• CTLe Model Checking

• ...

• Static Analysis

• Reachability Properties

• Statespace Stats

• Deadlocks

• MCL Model Checking

(event based)

• Compositional Verification

• Strong/ Divbranching/

Sharp Minimizations

• Powerful scripting language

• ...

15

4SECURail: different levels of complexity of analysis

- Simple «push-button» like formal analysis
(static analysis, reachability analysis, deadlock checking)

- More advanced verifications (model checking temporal logic formalas,
compositional analysis, bisimulations and equivalences)

16

4SECURail: back from Formal Models to Natural Laguage

Natural Language
 Requirements revision

Formal modelling
and analisys

Abstract modelling

Executable modelling

D2.3
Initial Natural Language

Requirements

modelling and analysis

Abstract, Semiformal
SysML/UML

Designs

Detailed, Executable
SysML/UML

Designs

Formal Models
+

Formal Properies

Natural Language
 Requirements, Assumptions,

Guarantees

17

4SECURail: hiding non essential implementation details

SAI_DISCONNECT.indication /

- [receive timer expired] /
SAI.SAI_DISCONNECT.request;

RBC.RBC_User_Disconnect_indication

- /
SAI.SAI_CONNECT.request;

start connection timer;

SAI_CONNECT.confirm /
RBC.RBC_User_Connect_indication;

start send and receive timer;

NOCOMMS
Disconnected

- [connection
timer expired] /

NOCOMMS
Connecting

NOCOMMS
 Waiting

SAI_DISCONNECT.indication /
RBC.RBC_User_disconnect_indication

R1

R2
R3

R4

R6

R5

R7 - [send timer expired] /
SAI.SAI_DATA.request(Life-sign,nodata)

RBC_User_Data.request(userdata) /
SAI.SAI_DATA_request (Rbadata,userdata)

R8

R9SAI_DATA_indication(msgtype,userdata)
[msgtype != lifesign] /

RBC.RBC_User_Data_indication(userdata) ;
restart receive timer;

R10 SAI_DATA_indication(msgtype,userdata)
[msgtype = lifesign] /
restart receive timer ;

R11

Initiator CSL

COMMS
Connected

18

4SECURail: The Approach of the Demonstrator

Natural Language
 Requirements revision

Formal modelling
and analisys

Abstract modelling

Executable modelling

D2.3
Initial Natural Language

Requirements

modelling and analysis

Abstract, Semiformal
SysML/UML

Designs

Detailed, Executable
SysML/UML

Designs

Formal Models
+

Formal Properies

Natural Language
 Requirements, Assumptions,

Guarantees

19

4SECURAIL: from Abstract Modelling to NL Requirements

- UML transitions directly mapped to NL requirements on control flow.

- Explicit definition, for ech component, of the assumptions it makes on the
rest of the system, and the guarantees of which it is responsible.

- Rigorous specification of the syntactic interface between component.

20

Conclusions and Observations:

- The construction of the executable model already reveals all the
NL ambiguities, part of the inconsistences, and missing points.

- Formal analisys of the executable model allows to detect errors
in the implementation, to identify hidden assumptions, and to assess
the expected guarantees of the various components.

- In the really "early" stages of requirements definition, makes sense to
investigate the "reverse" flow: from Formal Models to Natural Language

- Formal methods diversity allows to detect errors in the formal models
encoding, as well as in the translation and verification tools.

21

4SECURail: Demonstrator References

4SECURail website: https://4securail.eu

4SECURail Deliverables doi: 10.5281/zenodo.5807738
- D2.1 Initial rationale for demonstrator structure
- D2.3 Initial case study requirements definition
- D2.5 The formal methods demonstrator experiment

Revised case study requirements doi: 10.5281/zenodo.5541217
Formal models and scenarios doi: 10.5281/zenodo.5541307
Model transformation tools doi: 10.5281/zenodo.5541350

https://4securail.eu/
https://doi.org/10.5281/zenodo.5541217
https://doi.org/10.5281/zenodo.5541217
https://doi.org/10.5281/zenodo.5541307
https://doi.org/10.5281/zenodo.5541350

22

4SECURail: Structured Natural Language Requirements

Configuration Parameters ..
External Interactions ...
External Guarantees ...
External Assumptions ...

Behavioral Requirements ...

R2: When in Disconnected state, the CSL immediately sends
a SAI_CONNECT.request to the SAI component,
starts a connTimer, and moves to the Connecting state.

R3: When in Connecting state the connTimer expires,
the CSL moves to Disconnected state.

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s
view – the Joint Undertaking is not responsible for any use that may be made of the information it
contains. The users use the information at their sole risk and liability.

Thanks!

Franco Mazzanti
Dimitri Belli

ISTI-CNR

RSSRail 2022, Paris

