

Horizon 2020 European Union Funding for Research & Innovation

A Vision of Intelligent Train Control

Francesco Flammini^{1,2}, Lorenzo De Donato³, Alessandro Fantechi⁴, Valeria Vittorini³

- 1. Mälardalen University, Sweden
- 2. Linnaeus University, Sweden
- 3. University of Naples Federico II, Italy
- 4. University of Florence, Italy

Presentation Outline

- Context: The RAILS Project
- Base Concepts and Current Train Control Systems
- Al Challenges in Autonomous Trains
- Towards Intelligent Train Control

Activities

KoM Meeting (30/01/20)

RAILS Supported WS Series

AI4RAILS 2020

co-located with EDCC2020

AIARAILS 2021

co-located with EURO2021

AI4RAILS 2022

co-located with EDCC22

Zaragoza, Spain 12 September 2022

Upcoming

Mid-Term Work Shop (25/02/22)

1 Survey

1 AB Meeting

Roadmaps for AI integration in the raiL Sector

4 EU Partners | 10 AB Members | 2 Ph.D. Students

Structure

WP6: Project Management

WP1: State-of-the-Art of AI in the Railway Transport

 WP2: AI for Rail Safety and Automation
 WP3: AI for Predictive Maintenance and Defect Detection
 WP4: AI for Traffic Planning and Management

WP5: Dissemination and Future Roadmaps

Published Deliverables

https://rails-project.eu/downloads/deliverables

- **D1.1**: Definition of a reference taxonomy of AI in railways.
- **D1.2**: Summary of existing relevant projects and state-of-the-art of AI application in railways.
- **D1.3**: Application Areas (including guidelines, survey results, and recommendations).
- **D2.1**, **D3.1**, and **D4.1** which are "Reports on case studies and analysis of transferability from other sectors" in the context of WP2, WP3, and WP4 respectivel.

Talks & PresentationsIEEE ITCS 2020InnoRail 2021

021	RSSRail 202
	Upcoming
021	WCRR 2022

Papers & Articles

- ✓ Roadmaps for AI Integration in the Rail Sector – RAILS (ERCIM News 121)
- ✓ A Systematic Review of Artificial Intelligence Public Datasets for Railway Applications (MDPI Infrastructures)
- ✓ A Systematic Review of Artificial Intelligence Public Datasets for Railway Applications (MDPI Infrastructures)
- ✓ Software Verification and Validation of Safe Autonomous Cars: A Systematic Literature Review (IEEE Access)
- ✓ Artificial Intelligence in Railway Transport: Taxonomy, Regulations and Applications (IEEE Transactions on ITS)
- ✓ A Literature Review of Artificial Intelligence Applications in Railway Systems (Transportation Research Part C: Emerging Technologies)
- A vision of Intelligent Train Control (RSSRail 2022 - Lecture Notes in Computer Science)
- Trustworthy AI for safe autonomy of smart railways: directions and lessons learnt from other sectors (WCRR 2022)

@project rails

Horizon 2020 European Union Funding for Research & Innovation This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 881782. The content of this document reflects only the author's view – the Joint Undertaking is not responsible for any use that may be made of the information it contains. The users use the information at their sole risk and liability.

DisCoRail 20

INFORMS 20

https://rails-project.eu/ in RAILS S2R Project

Automation, Autonomy, and the Role of AI

Automation

Ability of a system to automatically or semi-automatically (i.e., without or with partial human intervention) perform a given task basing on pre-specified rules.

Autonomy (extends the Automation concept)

Ability of a system to dynamically adapt to unexpected scenarios by taking independent decisions.

Role of AI

To make vehicles capable of learning from the experience and taking autonomous decisions to adapt to changes in the environment.

Background on Current Train Control Systems

Automatic Train Management Functions

Automatic Train Operation	ATO	Automatically drive the train and stop at stations when needed.
Automatic Train Protection	ATP	Automatically protect the train by applying brakes when needed.
Automatic Train Control	ATC	Both ATP and ATO are in place to ensure full control of the train.
Automatic Train Supervision	ATS	Manage train schedule and coordinate routes along whole tracks.

Grade of Automation (GoA) Levels

GoA 0	Train operations are manually supervised by the driver, no automation.
GoA 1	Train operations are manually supervised by the driver supported by ATP.
GoA 2	Semi-automatic train operation. ATO and ATP systems automatically manage train operations and protection while supervised by the driver.
GoA 3	Driverless train operation with on-board staff handling possible emergencies.
GoA 4	Unattended train operation, neither the driver nor the staff are required.

Segregated and Open Railway Environments

Segregated Environments

(e.g., metro lines with platform screen doors) - Isolated from external factors -

ATO currently deployed as part of CBTC
Driverless Metros – High GoA till 4

Open Environments

(e.g., high speed, urban/suburban lines) - Not isolated from external factors -

ATO integration still experimental
 ATO over ETCS (AoE) – GoA2 (initially)

AI Challenges in Autonomous Trains

Safety-critical functionalities

Certification Challenges for AI (particularly for DL systems) Stability Explainability Possible solution: Define safety boundaries

for AI operation

Explainable AI (XAI)

https://www.darpa.mil/program/explainable-artificial-intelligence

Example of Safety Envelope

Koopman, P., Wagner, M., "Toward a framework for highly automated vehicle safety validation", SAE Technical Paper, 2018. RSSRail 2022 | June 2, 2022

Vision of Intelligent Train Control

RSSRail 2022 | June 2, 2022

*where present

Grades of Intelligence

Gol 1

Gol 2

This level includes ATC implementations where AI is not used or it is used for limited functions such as optimisation within ATS. That means *limited or no autonomy* is normally possible in open environments.

This level supports partial autonomy in open environments, by including <u>only ITO</u> as an adaptive ATO with energy, capacity and/or comfort optimisation capabilities, <u>or only ITP</u> for driving assistance and/or as a low-speed backup system in case of ATP unavailability or limited supervision.

Gol 3

Gol 4

in open environments, although <u>with no advanced learning and</u> <u>adaptation capabilities</u>. For instance, at Gol3, the artificial vision algorithms of ITP can be trained only once, e.g. to detect on-track obstacles, and never updated.

This level includes *both ITO and ITP*, allowing for full autonomy even

This level includes <u>both ITO and ITP</u>, allowing for full autonomy in all environments, <u>with advanced learning and adaptation capabilities</u>, <u>such as unsupervised and reinforcement learning</u>. The system is typically <u>fully connected</u>, dynamically updated, and supported by higher levels of fog/cloud intelligence by using external AI models for big data analytics, such as those enabled by digital twins.

RSSRail 2022 | June 2, 2022

Levels of Intelligence in Railway Control and Supervision

RSSRail 2022 | June 2, 2022

MAPE-K Loop for Intelligent Train Control

Conclusions

Challenges

In case AI will be in charge of managing the safety of the whole system, among others, they would be required:

- Well-defined certification processes
- Mechanisms incrementing situation awareness
- Monitoring mechanisms

Directions

For the fast take up of AI in Autonomous Train Driving:

- (Deep) Reinforcement Learning & Federated Learning
- Advanced Train Driving Simulators
- (Cognitive) Digital Twins

Thank you for your attention!

Lorenzo De Donato: lorenzo.dedonato@unina.it

2 @project_rails

https://www.researchgate.net/project/RAILS-Roadmaps-for-AI-integration-in-the-raiL-Sector-EU-Horizon-2020-Shift2Rail-JU