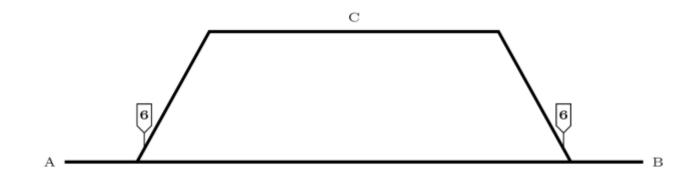
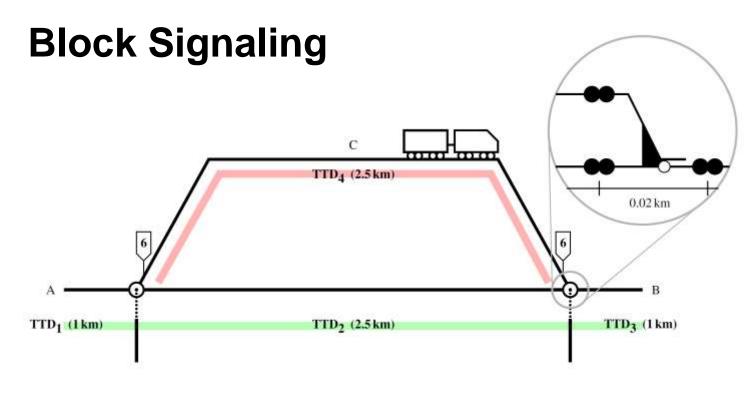
Optimal Railway Routing Using Virtual Subsections

Tom Peham¹, Judith Przigoda², Nils Przigoda², and Robert Wille^{1,3}


¹Technical University of Munich, Germany ²Siemens Mobility GmbH, Braunschweig, Germany ³Software Competence Center Hagenberg, Austria

https://www.cda.cit.tum.de/

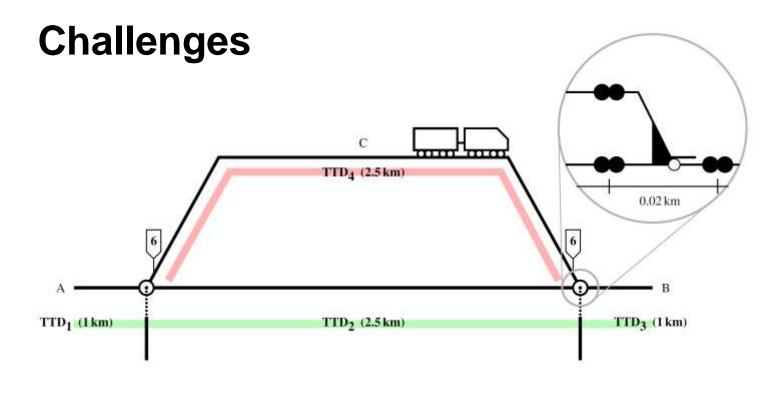
RAILWAY SIGNALING



- Prevent trains from running into each other
- Check, whether schedule is realistic/possible

Fundamental principle today:
 Block signaling

Train	Start	Goal	Speed[km/h]	Length[m]	Departure Time	Arrival Time
1	Α	В	180	400	0:00	0:04:30
2	В	Α	120	700	0:00	0:04:00
3	Α	С	120	100	0:01	0:03:00
4	B	Α	180	250	0:01	0:05:00

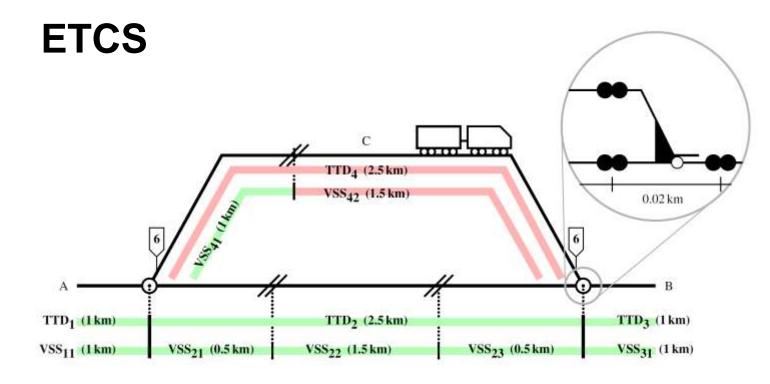


 Railway network divided into blocks
 At most one train is allowed to occupy a block at any given time

Requires a Trackside Train
 Detection System (TTD),
 e.g., axle counters

Train	Start	Goal	Speed[km/h]	Length[m]	Departure Time	Arrival Time
1	A	В	180	400	0:00	0:04:30
2	B	Α	120	700	0:00	0:04:00
3	A	C	120	100	0:01	0:03:00
4	B	Α	180	250	0:01	0:05:00

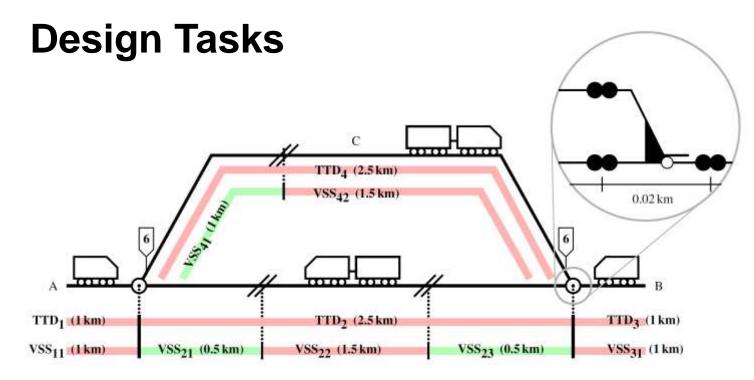
■ TDDs usually defined by trade-offs


Lengths varies between some meters and several kilometers

➔ Affecting efficiency of the network

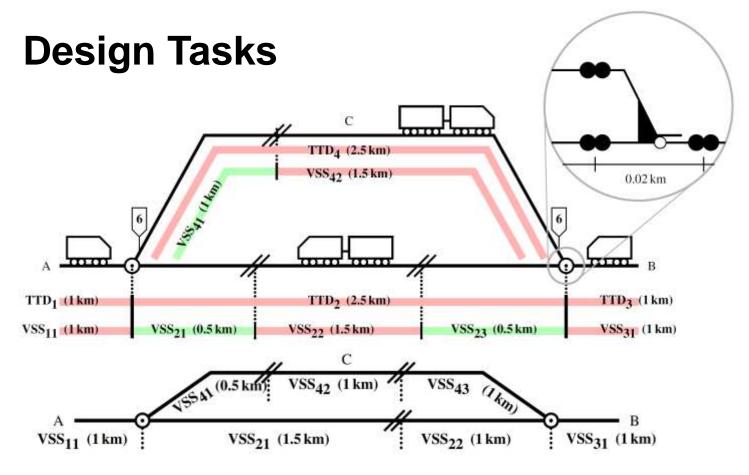
➔ Rather static

	Train	Start	Goal	Speed[km/h]	Length[m]	Departure Time	Arrival Time
8	1	A	В	180	400	0:00	0:04:30
	2	B	А	120	700	0:00	0:04:00
	3	A	С	120	100	0:01	0:03:00
	4	B	Α	180	250	0:01	0:05:00



- European Train Control System (here: Hybrid Level 3)
- Allows Virtual Subsections (VSSs)
- Do not require physical axle counters anymore
- ➔ Allow for a higher degree of freedom

Train	Start	Goal	Speed[km/h]	Length[m]	Departure Time	Arrival Time
1	A	В	180	400	0:00	0:04:30
2	B	Α	120	700	0:00	0:04:00
3	A	С	120	100	0:01	0:03:00
4	B	Α	180	250	0:01	0:05:00



- Given:
- □ Layout
- □ Desired Schedule
- Verification of Train Schedules on ETCS Layouts
- Generation of VSS Layouts
- Schedule Optimization Using the Potential of VSS

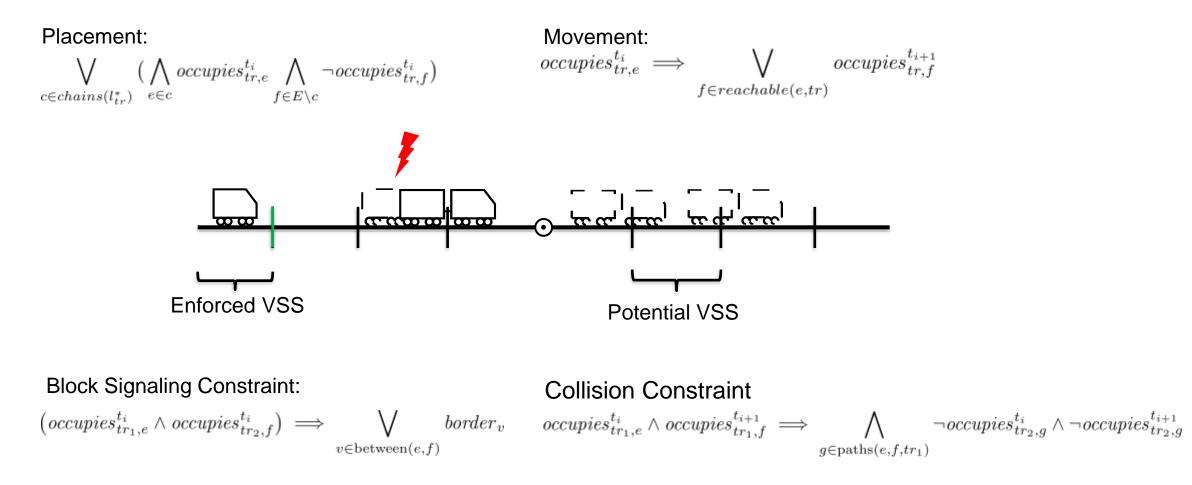
Train	Start	Goal	Speed[km/h]	Length[m]	Departure Time	Arrival Time
1	A	В	180	400	0:00	0:04:30
2	B	Α	120	700	0:00	0:04:00
3	Α	С	120	100	0:01	0:03:00
4	B	Α	180	250	0:01	0:05:00

Given:

- □ Layout
- $\hfill\square$ Desired Schedule
- Verification of Train Schedules on ETCS Layouts
- Generation of VSS Layouts
- Schedule Optimization Using the Potential of VSS

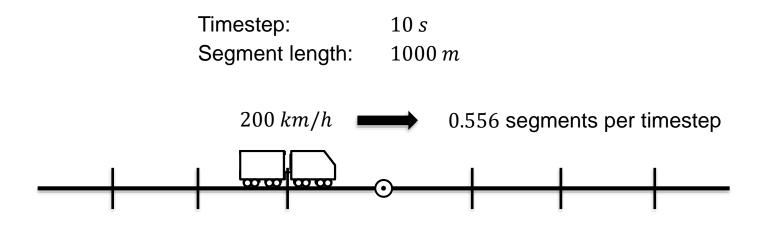
But

- □ Highly non-trivial tasks
- Thus far, mainly rely on manual labor


Train	Start	Goal	Speed[km/h]	Length[m]	Departure Time	Arrival Time
1	A	В	180	400	0:00	0:03:30
2	B	Α	120	700	0:00	0:02:30
3	Α	С	120	100	0:01	0:02:30
4	B	Α	180	250	0:01	0:03:30

Generation of VSS Layouts – Previous Approach

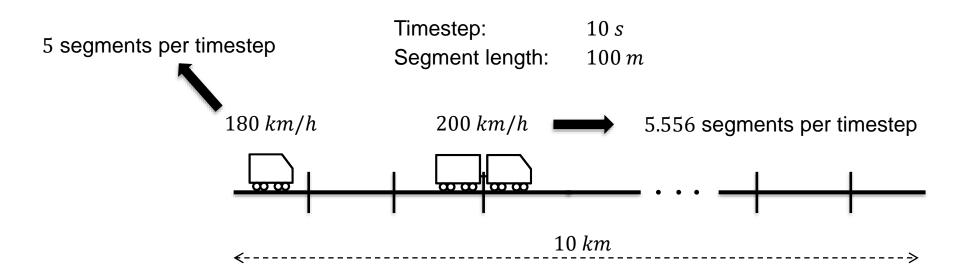
SIEMENS


Encode problem as a Boolean formula

SAT Solver tries to find optimal satisfying assignment

Issues with Discretization – Infeasible Configurations

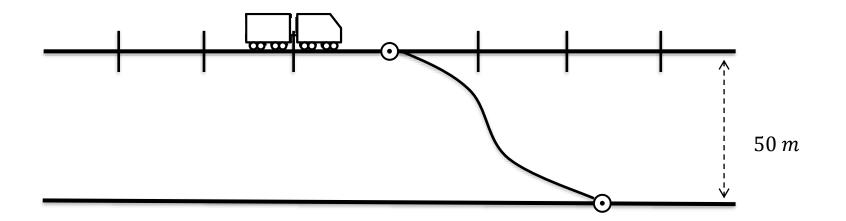
Bad choice of discretization of space in relation to discretization of time:



- Rounding down leads to speed of 0!
- Rounding up (to 1) corresponds to a real-world speed of $360 \ km/h$

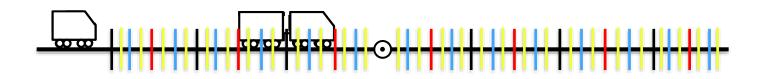
Issues with Discretization – Rounding Errors

Optimal solutions in discrete space are not actually optimal solutions


- Optimal solution in real-world: 18 time steps
- Optimal solution in discrete space: 20 time steps
 + suboptimal placement of VSS

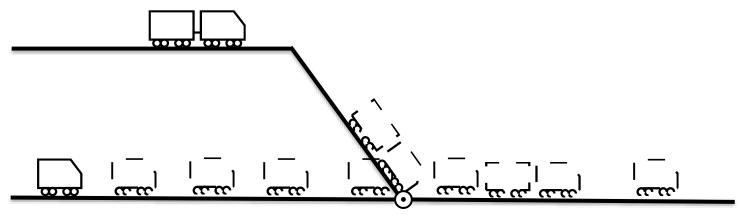
Issues with Discretization - Oversimplifications

Parts of a railway network cannot be modelled with a coarse spatial resolution

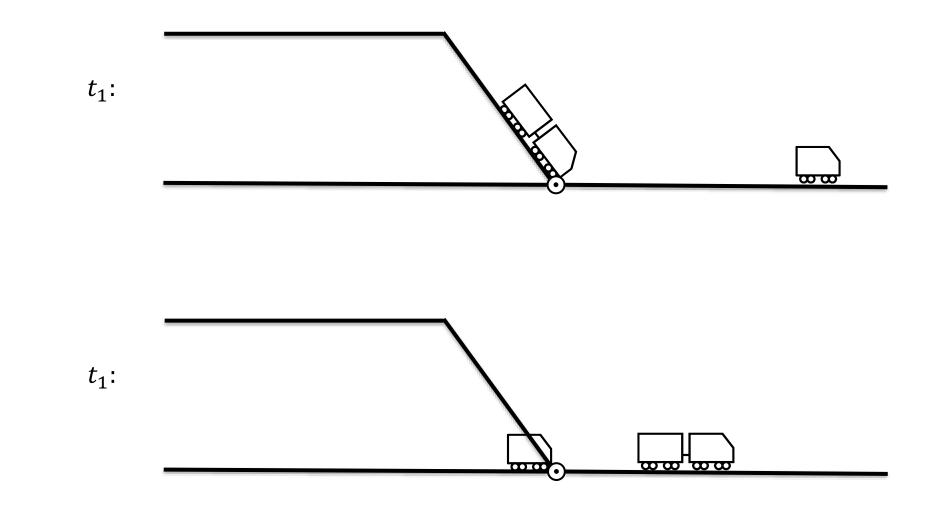


Solution 1 – Smaller Segments

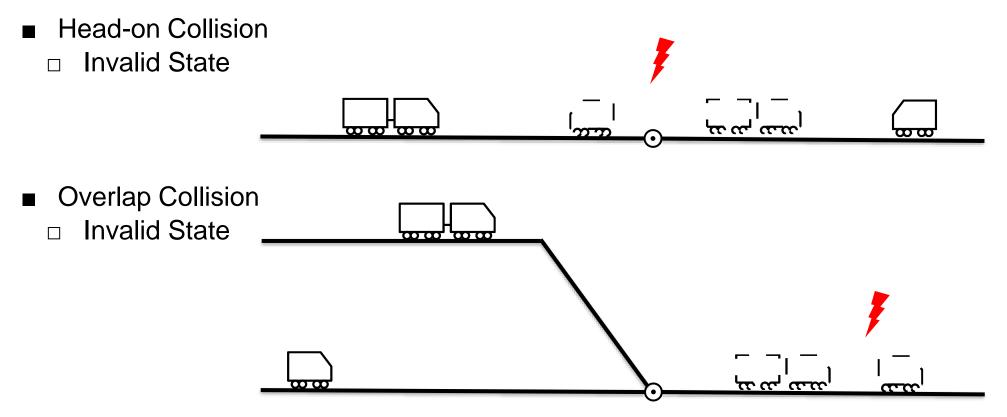
Avoid stated issues by employing a fine resolution



- The number of constraints grows with $O(n^3)$ in the number of segments □ Even for trivial examples this leads to enormous SAT formulations
- Requires experimentation or expertise
 Not completely automatic

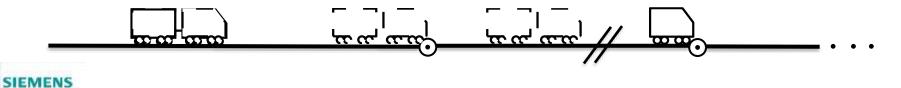

Solution 2 - Novel A*-Search Approach

- State s: Position of all trains on the network and incomplete VSS layout
- Cost g(s): Time elapsed to reach state *s*
- Heuristic h(s):
 - Time until all trains reach their goal from s if no collisions occurred f(s) = g(s) + h(s)Estimate of true cost:
- Next states: All possible positions reachable by trains within one timestep
- How to handle this large state space?
 - Ignore irrelevant states

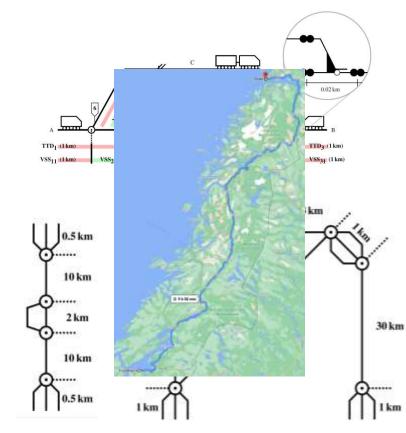


Computing Next States

Handling Collisions

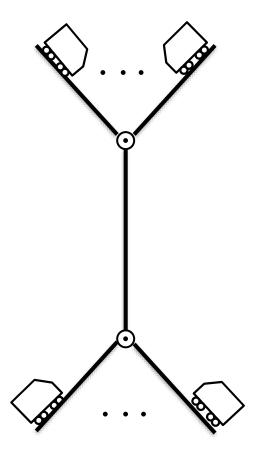

Rear-end Collision

sccn

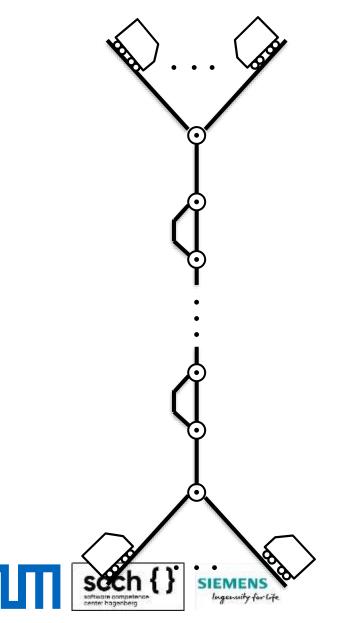

twore competence

 $\hfill\square$ Resolved by new VSS

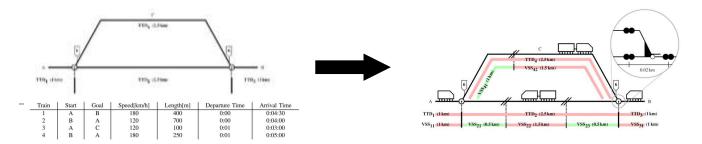
Ingenerity for lif


Application and Case Studies

Method	Configuration r_s [m] t_{max}	TTD/VSS	Time Steps	$\sum t$	Runtime [s]
Running Example (v	vith 4 trains an tot	al travel length o	of 7 km)		
SAT (discretized)	500 11	5	7	23	0.1
A [*] Search	e	9	7	21	< 0.1
Simple Example (wit	th 4 trains and tota	al travel length o	f 27 km)		
SAT (discretized)	500 20	14	15	53	29.2
A [*] Search	2	26	15	50	< 0.1
Complex Example (v	with 6 trains and to	otal travel length	of 148 km)		
SAT (discretized)	1000 18	25	16	71	124.9
A* Search		42	14	58	138.3
Nordlandsbanen (wit	th 3 trains and tota	al travel length o	$f 819.6 \mathrm{km})$		
SAT (discretized)	1000 140		(E)		> 3600
A [*] Search	2	519	135	286	45.713


Application and Case Studies

Method	Configu r_s [m]	t_{max}	TTD/VSS	Time Steps	$\sum t$	Runtime [s]
Bottleneck (with 4 th	rains and to	tal trave	l length of 10 k	m)		
	1000	20	13	18	60	0.6
	500	20	13	18	60	2.3
SAT (discretized)	100	20	16	15	54	84.9
- 29 10	50	20	16	15	54	777.9
	50	15	16	15	54	866.5
A [*] Search	-	(39	15	50	< 0.1
Bottleneck (with 10	trains and t	otal trav	el lengh of 2.61	cm)		
	1000	20	1	Unsatisfiable		1185.9
SAT (discretized)	1000	30	-	-	-	> 3600
	100	15	-	-		> 3600
A [*] Search	-	10000	30	12	65	11.1
Bottleneck (with 12	trains and t	otal trav	el length of 3 k	m)		
SAT (discretized)	1000	20		Unsatisfiable		1275.1
A [*] Search			34	15	92	371.0


Application and Case Studies

Method	Configuration r_s [m] t_{max}		TTD/VSS	Time Steps	$\sum t$	Runtime [s]
Bidirectional (with 6	trains and	total tra	vel length of 14	.6 km)		
	1000	30	16	30	124	50.6
CAT (1:	500	30	18	21	112	698.2
SAT (discretized)	100	30	1	-	-	> 3600
	100	23	-	-	17	> 3600
A [*] Search	-		53	22	105	1.6
Train Station (with	6 trains and	total tra	vel length of 7.	.1 km)		
	1000	30	19	9	39	1.1
CAT (disconstinued)	500	30	19	9	39	1.1
SAT (discretized)	100	30	31	21	114	64.1
	50	30	31	22	117	1381.3
A [*] Search	3		58	22	110	17.7
Train Station (with	8 trains and	total tra	wel length of 7	.3 km)		
	1000	30	21	11	59	9.6
CATE (discustional)	500	30	21	11	59	9.6
SAT (discretized)	100	30	-	-	-	> 3600
	100	23	33	23	159	564.1
A [*] Search	-	0.000	0	Dut of Memory		-

Conclusions

Exploiting the potential and degree of freedom offered by ETCS Level 3

Initial solution (utilizing satisfiability solvers) by discretizing time and space
 Issues with discretization

- Novel A* Search solution
 - □ No discretization needed → VSS created on the fly
 - Scales much better
- Future Work: Scale to more realistic scenarios with heuristic solution
- More at https://www.cda.cit.tum.de/research/etcs/

